澳门赌城官网 1

用DNA“作画” 研究人员利用DNA结构属性打造纳米尺度模型

科学家设想的通过编程,让形状互补DNA零件自行组装成纳米机器。

澳门赌城官网 2

最近,德国慕尼黑工业大学创造出了一些新型纳米设备:一个会动手臂的机器人,一本能打开、合上的书,一个能开关的齿轮传动装置,还有一个促动器——或许这些已经很吸引人了,但还不是重点。重要的是这些设备体现了科学上的突破——把DNA作为一种可编程的建筑材料,用于制造纳米级的结构和机器。

利用DNA重现的梵高《星月夜》作品图片来源:Ashwin Gopinath/Caltech

研究人员发表在《科学》杂志上的上述成果,揭示了一种新的DNA连接方法。重组和模块化的三维DNA组件有着互补的形状,能很容易扣在一起,而不是像拉链似的拉在一起的碱基对。这不但能造出会动的纳米机器,而且提供了一种工具包,使研究人员对模块自行组装编程更加容易。

文森特:梵高的《星月夜》是后印象派艺术的经典。自从这位荷兰艺术家在1889年创作了《星月夜》,画中那些异想天开的漩涡便令艺术爱好者痴狂。2016年,美国加州理工学院生物工程师Ashwin
Gopinath重建了这幅作品。不过,他用DNA而非油墨绘制了画作的副本。

新一代DNA折叠术

Gopinath的创作绘制在硅片上,展现了材料科学曾经很不起眼的分支——DNA纳米技术正在崛起。该领域出现于上世纪90年代。当时,科学家开始设计纳米尺度机器。如今,300多个研究小组正试图利用DNA碱基配对属性,目的是将分子作为一种建筑材料而非遗传信息的携带者进行处理。

据慕尼黑理工大学教授亨德里克·戴茨介绍,这一领域通常叫做“DNA折叠术”,正在迅速走向实际应用。日前,戴茨因为在这一领域的研究获得了德国最重要的研究奖项——戈特弗里德·威廉·莱布尼茨奖。

“一旦我们开始意识到可以利用DNA中的信息构建物体,一连串的创作活动便由此开启。”被普遍认为是DNA纳米技术开创者的纽约大学合成化学家Ned
Seeman表示。

近年来,戴茨和他的团队在DNA折叠术的应用方面迈出了重要的几步,比如开发出一些实验装置,包括一个由DNA制造的人工膜通道;发现了能大大节约时间的自组装程序,使整个组装过程从一周缩短到几小时;证明了极其复杂的结构也能按设计组装,并具有亚纳米级的精度。

在细胞分裂期间,DNA形成被称为霍利迪连结体的四链中间体。这种结构是不稳定的,并且会迅速瓦解成双链螺旋。上世纪80年代早期,Seeman通过将交叉点处每条链的序列相互配对,成功地让这种结构保持稳定。他继续创造出拥有6条链的交叉点,从而形成了首个3D形式的分支状DNA结构。一系列愈发复杂的设计随之而来:1991年是树枝状立方体,1998年是分支状DNA晶体,2005年是DNA管道。

然而,以往所有的进步都要用到“碱基配对”,以此决定溶液中每条链和DNA组合之间该怎么结合。新研究中最新奇的东西是“胶水”。

2004年,如今在哈佛大学怀斯生物启发工程研究所任职的生物化学家William
Shih采用了一种不同的方法。他仅利用单链DNA,便形成了22纳米宽的八面体。这条拥有1669个碱基的DNA链,利用5条拥有30个碱基的DNA链维持形状。

“一旦你用碱基对造出了一个组装单位,就很难打破它。”戴茨解释说,“所以动态结构所用的方法通常在结构上是很简单的。”为了能让会动的DNA纳米机器更普适,有更广泛的潜在用途,研究小组从自然的生物分子工具箱中借鉴了两种技术:蛋白质的形状互补方法和它们形成相对弱键的趋势,前者可以简化分子之间的对接,后者能在不需要时断开连接。

基于这个想法,两年后,Rothemund利用上百个拥有26~32个碱基的DNA片段,指导7000个碱基对折叠成各种直径约为100纳米的2D形状。同样在怀斯研究所任职的DNA科学家Peng
Yin表示,这是“一项里程碑式的成就”,因为它极大地增加了DNA纳米结构的复杂程度和大小。

仿生可提高灵活性

几年后,由麻省理工学院生物物理学家Mark
Bathe领导的团队研发出被称为CanDo的辅助工具,以检查caDNAno软件程序构建的DNA折纸蓝图。“它将告诉你绘制的结构在3D形式下看起来是什么样子的。”Bathe介绍说。此后,他领导的小组又研发出被称为DAEDALUS的工具。仅通过输入想要的几何形状,它便能告诉用户所需的全部序列,包括DNA支架。

研究人员还从一种自然机制中获得了灵感:让核酸分子通过比碱基对更弱的键“粘合”在一起。在自然界,当RNA基酶RNase
P“认出”转移RNA时,利用它们的互补外形能形成这种弱键,分子则被引导到足够近的范围,就像宇宙飞船与空间站对接。

另一种方法是利用DNA“砖块”。2012年,Shih实验室的博士后研究人员Yonggang
Ke发明了一项技术,其中DNA纳米结构的每个“砖块”拥有32个或42个碱基的独特序列。每个序列的1/4同另一个“砖块”上的1/4序列是互补的。通过连接并扩展这些“砖块”,研究人员能像建造一堵砖墙那样组装起一块画布。

相关文章

网站地图xml地图